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1. Introduction 

1.1 General 

Macaulay’s Method is a means to find the equation that describes the deflected shape 

of a beam. From this equation, any deflection of interest can be found. 

 

Before Macaulay’s paper of 1919, the equation for the deflection of beams could not 

be found in closed form. Different equations for bending moment were used at 

different locations in the beam. 

 

Macaulay’s Method enables us to write a single equation for bending moment for the 

full length of the beam. When coupled with the Euler-Bernoulli theory, we can then 

integrate the expression for bending moment to find the equation for deflection. 

 

Before looking at the deflection of beams, there are some preliminary results needed 

and these are introduced here. 

 

Some spreadsheet results are presented in these notes; the relevant spreadsheets are 

available from www.colincaprani.com.  
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1.2 Background 

General Deflection Equation 

From the Euler-Bernoulli Theory of Bending, at a point along a beam, we know: 

 

 1 M
R EI
=  

 

where: 

• R is the radius of curvature of the point, and 1 R  is the curvature; 

• M is the bending moment at the point; 

• E is the elastic modulus; 

• I is the second moment of area at the point. 

 

Mathematically, is can be shown that, for large R: 

 

 
2

2

1 d y
R dx
=  

 

Where y is the deflection at the point, and x is the distance of the point along the 

beam. Hence, the fundamental equation in finding deflections is: 

 

 
2

2
x

x

d y M
dx EI

=  

 

In which the subscripts show that both M and EI are functions of x and so may 

change along the length of the beam. 
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Illustrative Example 

Consider the following beam with material property 230 kN/mmE = : 

 

 
 

For this and subsequent problems, we need to know how to determine the flexural 

rigidity, EI, whilst being aware of the unit conversions required: 

 

 
3 3

8 4200 600 36 10  mm
12 12
bdI ⋅

= = = ×  

 
( )( )8

3 2
6

30 36 10
108 10  kNm

10
EI

×
= = ×  

 

In which the unit conversions for this are: 

 

 
( )

( )

4
2

2
6 2 2

kN mm
mm kNm

10 mm  per m
EI

⎛ ⎞ ⋅⎜ ⎟
⎝ ⎠= =  

 

To find the deflection, we need to begin by getting an equation for the bending 

moments in the beam by taking free body diagrams: 

 



Structural Analysis III 

Dr. C. Caprani 7

 
 

For the free-body diagram A to the cut 1 1X X− , 1 1M about 0X X− =∑  gives: 

 

( )
( )
40 0

40

M x x

M x x

− =

=
 

 

For the second cut 2 2M about 0X X− =∑  gives: 

 

( ) ( )
( ) ( )

40 80 4 0

40 80 4

M x x x

M x x x

− + − =

= − −
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So the final equation for the bending moment is: 

 

 ( ) ( )
( ) ( )

40 0 4 portion 
40 80 4 4 8 portion 

x x AB
M x

x x x BC
⎧ ≤ ≤

= ⎨ − − ≤ ≤⎩
 

 

 
 

The equations differ by the ( )80 4x− −  term, which only comes into play once we are 

beyond B where the point load of 80 kN is. 

 

Going back to our basic formula, to find the deflection we use: 

 

( ) ( )2

2  
M x M xd y y dx

dx EI EI
= ⇒ = ∫∫  

 

But since we have two equations for the bending moment, we will have two different 

integrations and four constants of integration. 
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Though it is solvable, every extra load would cause two more constants of 

integration. Therefore for even ordinary forms of loading, the integrations could be 

quite involved. 

 

The solution is to have some means of ‘turning off’ the ( )80 4x− −  term when 4x ≤  

and turning it on when 4x > . This is what Macaulay’s Method allows us to do. It 

recognizes that when 4x ≤  the value in the brackets, ( )4x − , is negative, and when 

4x >  the value in the brackets is positive. So a Macaulay bracket, [ ]⋅ , is defined to be 

zero when the term inside it is negative, and takes its value when the term inside it is 

positive: 

 

 [ ] 0 4
4

4 4
x

x
x x

≤⎧
− = ⎨ − >⎩

 

 

Another way to think of the Macaulay bracket is: 

 

 [ ] ( )4 max 4,0x x− = −  

 

The above is the essence of Macaulay’s Method. The idea of the special brackets is 

routed in a strong mathematical background which is required for more advanced 

understanding and applications. So we next examine this background, whilst trying 

no to loose sight of its essence, explained above. 

 

Note: when implementing a Macaulay analysis in MS Excel or Matlab, it is easier to 

use the max function, as above, rather than lots of if statements. 
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1.3 Discontinuity Functions 

Background 

This section looks at the mathematics that lies behind Macaulay’s Method. The 

method relies upon special functions which are quite unlike usual mathematical 

functions. Whereas usual functions of variables are continuous, these functions have 

discontinuities. But it is these discontinuities that make them so useful for our 

purpose. However, because of the discontinuities these functions have to be treated 

carefully, and we will clearly define how we will use them. There are two types. 

 

Notation 

In mathematics, discontinuity functions are usually represented with angled brackets 

to distinguish them from other types of brackets: 

• Usual ordinary brackets:  ( ) [ ] {}⋅ ⋅ ⋅  

• Usual discontinuity brackets: ⋅  

 

However (and this is a big one), we will use square brackets to represent our 

discontinuity functions. This is because in handwriting they are more easily 

distinguishable than the angled brackets which can look similar to numbers.  

 

Therefore, we adopt the following convention here: 

• Ordinary functions:  ( ) {}⋅ ⋅  

• Discontinuity functions:  [ ]⋅  
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Macaulay Functions 

Macaulay functions represent quantities that begin at a point a. Before point a the 

function has zero value, after point a the function has a defined value. So, for 

example, point a might be the time at which a light was turned on, and the function 

then represents the brightness in the room: zero before a and bright after a.  

 

Mathematically: 

 

 ( ) [ ]
( )

0 when 

when 

where 0,1,2,...

n

nn

x a
F x x a

x a x a

n

≤⎧⎪= − = ⎨
− >⎪⎩

=

 

 

When the exponent 0n = , we have: 

 

 ( ) [ ]0

0

0 when 
1 when 

x a
F x x a

x a
≤⎧

= − = ⎨ >⎩
 

 

This is called the step function, because when it is plotted we have: 
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For 1n = , we have: 

 

 ( ) [ ]11

0 when 
when 

x a
F x x a

x a x a
≤⎧

= − = ⎨ − >⎩
 

 
 

For 2n = , we have: 

 

 ( ) [ ]
( )

2

21

0 when 

when 

x a
F x x a

x a x a

≤⎧⎪= − = ⎨
− >⎪⎩

 

 
 

And so on for any value of n. 
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Singularity Functions 

Singularity functions behave differently to Macaulay functions. They are defined to 

be zero everywhere except point a. So in the light switch example the singularity 

function could represent the action of switching on the light. 

 

Mathematically: 

 

 ( ) [ ] 0 when 
when 

where 1, 2, 3,...

n

n

x a
F x x a

x a
n

≠⎧
= − = ⎨∞ =⎩

= − − −

 

 

The singularity arises since when 1n = − , for example, we have: 

 

 ( )1

0 when 1
when 

x a
F x

x ax a−

≠⎧⎡ ⎤= = ⎨⎢ ⎥ ∞ =−⎣ ⎦ ⎩
 

 

Two singularity functions, very important for us, are: 

 

1. When 1n = − , the function represents a unit force at point a: 
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2. When 2n = − , the function represents a unit moment located at point a: 

 

 
 

Integration of Discontinuity Functions 

These functions can be integrated almost like ordinary functions: 

 

Macaulay functions ( 0n ≥ ): 

 

 ( ) ( ) [ ] [ ] 1

1

0 0

i.e.
1 1

nx x
nn

n

x aF x
F x x a

n n

+

+ −
= − =

+ +∫ ∫  

 

Singularity functions ( 0n < ): 

 

 ( ) ( ) [ ] [ ] 1

1
0 0

i.e.
x x

n n

n nF x F x x a x a +

+= − = −∫ ∫  
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1.4 Modelling of Load Types 

Basis 

Since our aim is to find a single equation for the bending moments along the beam, 

we will use discontinuity functions to represent the loads. However, since we will be 

taking moments, we need to know how different load types will relate to the bending 

moments. The relationship between moment and load is: 

 

 ( ) ( ) ( ) ( )and 
dV x dM x

w x V x
dx dx

= =  

 

Thus: 

 

 
( ) ( )

( ) ( )

2

2

d M x
w x

dx
M x w x dx

=

= ∫∫
 

 

So we will take the double integral of the discontinuity representation of a load to 

find its representation in bending moment. 
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Moment Load 

A moment load of value M, located at point a, is represented by [ ] 2M x a −
−  and so 

appears in the bending moment equation as: 

 

 ( ) [ ] [ ]2 0M x M x a dx M x a−
= − = −∫∫  

 

Point Load 

A point load of value P, located at point a, is represented by [ ] 1P x a −
−  and so 

appears in the bending moment equation as: 

 

 ( ) [ ] [ ]1 1M x P x a dx P x a−
= − = −∫∫  

 

Uniformly Distributed Load 

A UDL of value w, beginning at point a and carrying on to the end of the beam, is 

represented by the step function [ ]0w x a−  and so appears in the bending moment 

equation as: 

 

 ( ) [ ] [ ]0 2

2
wM x w x a dx x a= − = −∫∫  
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Patch Load 

If the UDL finishes before the end of the beam – sometimes called a patch load – we 

have a difficulty. This is because a Macaulay function ‘turns on’ at point a and never 

turns off again. Therefore, to cancel its effect beyond its finish point (point b say), we 

turn on a new load that cancels out the original load, giving a net load of zero, as 

shown: 
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Structurally this is the same as doing the following superposition: 

 

 
 

And finally mathematically we represent the patch load that starts at point a and 

finishes at point b as: 

 

 [ ] [ ]0 0w x a w x b− − −  

 

Giving the resulting bending moment equation as: 

 

 ( ) [ ] [ ]{ } [ ] [ ]0 0 2 2

2 2
w wM x w x a w x b dx x a x b= − − − = − − −∫∫  
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1.5 Analysis Procedure 

Steps in Analysis 

1. Draw a free body diagram of the member and take moments about the cut to 

obtain an equation for ( )M x . 

2. Equate ( )M x  to 
2

2

d yEI
dx

 - this is Equation 1. 

3. Integrate Equation 1 to obtain an expression for the rotations along the beam, 

dyEI
dx

 - this is Equation 2, and has rotation constant of integration Cθ . 

4. Integrate Equation 2 to obtain an expression for the deflections along the beam, 

EIy  - this is Equation 3, and has deflection constant of integration Cδ . 

5. Us known displacements at support points to calculate the unknown constants 

of integration, and any unknown reactions. 

6. Substitute the calculated values into the previous equations: 

a. Substitute for any unknown reactions; 

b.  Substitute the value for Cθ  into Equation 2, to give Equation 4; 

c. Substitute the value for Cδ  into Equation 3, giving Equation 5. 

7. Solve for required displacements by substituting the location into Equation 4 or 

5 as appropriate. 

 

Note that the constant of integration notation reflects the following: 

• Cθ  is the rotation where 0x = , i.e. the start of the beam; 

• Cδ  is the deflection where 0x = . 

The constants of integration will always be in units of kN and m since we will keep 

our loads and distances in these units. Thus our final deflections will be in units of m, 

and our rotations in units of rads. 
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Finding the Maximum Deflection 

A usual problem is to find the maximum deflection. Given any curve ( )y f x= , we 

know from calculus that y reaches a maximum at the location where 0dy
dx

= . This is 

no different in our case where y is now deflection and dy
dx

 is the rotation. Therefore: 

 

A local maximum displacement occurs at a point of zero rotation 

 

The term local maximum indicates that there may be a few points on the deflected 

shape where there is zero rotation, or local maximum deflections. The overall biggest 

deflection will be the biggest of these local maxima. For example: 

 

 
 

So in this beam we have 0θ =  at two locations, giving two local maximum 

deflections, 1,maxy  and 2,maxy . The overall largest deflection is ( )max 1,max 2,maxmax ,y y y= . 

 

Lastly, to find the location of the maximum deflection we need to find where 0θ = . 

Thus we need to solve the problem’s Equation 4 to find an x that gives 0θ = . 

Sometimes this can be done algebraically, but often it is done using trial and error. 

Once the x is found that gives 0θ = , we know that this is also a local maximum 

deflection and so use this x in Equation 5 to find the local maximum deflection. 
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Sign Convention 

In Macaulay’s Method, we will assume there to be tension on the bottom of the 

member by drawing our ( )M x  arrow coming from the bottom of the member. By 

doing this, we orient the x-y axis system as normal: positive y upwards; positive x to 

the right; anti-clockwise rotations are positive – all as shown below. We do this even 

(e.g. a cantilever) where it is apparent that tension is on top of the beam. In this way, 

we know that downward deflections will always be algebraically negative. 

 

 
 

When it comes to frame members at an angle, we just imagine the above diagrams 

rotated to the angle of the member. 
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2. Determinate Beams 

2.1 Example 1 – Point Load 

Problem 

For the beam looked at previously, calculate the rotations at the supports, show the 

maximum deflection is at midspan, and calculate the maximum deflection. 
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Solution 

Step 1 

The appropriate free-body diagram is: 

 

 
 

Note that in this diagram we have taken the cut so that all loading is accounted for. 

Taking moments about the cut, we have: 

 

( ) [ ]40 80 4 0M x x x− + − =  

 

In which the Macaulay brackets have been used to indicate that when 4x ≤  the term 

involving the 80 kN point load should become zero. Hence: 

 

( ) [ ]40 80 4M x x x= − −  

 

Step 2 

Thus we write: 

 

 ( ) [ ]
2

2 40 80 4d yM x EI x x
dx

= = − −  Equation 1 
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Step 3 

Integrate Equation 1 to get: 

 

 [ ]2240 80 4
2 2

dyEI x x C
dx θ= − − +  Equation 2 

 

Step 4 

Integrate Equation 2 to get: 

 

 [ ]3340 80 4
6 6

EIy x x C x Cθ δ= − − + +  Equation 3 

 

Notice that we haven’t divided in by the denominators. This makes it easier to check 

for errors since, for example, we can follow the 40 kN reaction at A all the way 

through the calculation. 

 

Step 5 

To determine the constants of integration we use the known displacements at the 

supports. That is: 

• Support A: located at 0x = , deflection is zero, i.e. 0y = ; 

• Support C: located at 8x = , deflection is zero, i.e. 0y = . 

 

So, using Equation 3, for the first boundary condition, 0y =  at 0x =  gives: 

 

 ( ) ( ) [ ] ( )3340 800 0 0 4 0
6 6

EI C Cθ δ= − − + +  

 

 Impose the Macaulay bracket to get: 
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 ( ) ( ) [ ]3340 800 0 0 4
6 6

EI = − − ( )0

0 0 0 0

C C

C

θ δ

δ

+ +

= − + +
 

 

Therefore: 

 

0Cδ =  

 

Again using Equation 3 for the second boundary condition of 0y =  at 8x =  gives: 

 

 ( ) ( ) [ ] ( )3340 800 8 8 4 8 0
6 6

EI Cθ= − − + +  

 

Since the term in the Macaulay brackets is positive, we keep its value. Note also that 

we have used the fact that we know 0Cδ = . Thus: 

 

20480 51200 8
6 6

48 15360
320

C

C
C

θ

θ

θ

= − +

= −
= −

 

 

Which is in units of kN and m, as discussed previously.  

 

Step 6 

Now with the constants known, we re-write Equations 2 & 3 to get Equations 4 & 5: 

 

 [ ]2240 80 4 320
2 2

dyEI x x
dx

= − − −  Equation 4 
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 [ ]3340 80 4 320
6 6

EIy x x x= − − −  Equation 5 

 

With Equations 4 & 5 found, we can now calculate any deformation of interest. 

 

Rotation at A 

We are interested in A

dy
dx

θ ≡  at 0x = . Thus, using Equation 4: 

 

( ) [ ]2240 800 0 4
2 2AEIθ = − − 320

320
320

A

A

EI

EI

θ

θ

−

= −
−

=

 

 

From before we have 3 2108 10  kNmEI = × , hence: 

 

 3

320 0.003 rads
108 10Aθ
−

= = −
×

 

 

The negative sign indicates a clockwise rotation at A as shown: 
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Rotation at C 

We are interested in C

dy
dx

θ ≡  at 8x = . Again, using Equation 4: 

 

( ) [ ]2240 808 8 4 320
2 2

1280 640 320
320

0.003 rads

C

C

C

EI

EI

EI

θ

θ

θ

= − − −

= − −

+
=

= +

 

 

So this rotation is equal, but opposite in sign, to the rotation at A, as shown: 
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The rotations are thus symmetrical as is expected of a symmetrical beam 

symmetrically loaded.  

 

Location of Maximum Deflection 

Since the rotations are symmetrical, we suspect that the maximum deflection is at the 

centre of the beam, but we will check this and not assume it. Thus we seek to confirm 

that the rotation at B (i.e. 4x = ) is zero. Using Equation 4: 

 

( ) [ ]2240 804 4 4
2 2BEIθ = − − 320

320 0 320
0

B

B

EIθ
θ

−

= − −
=

 

 

Therefore the maximum deflection does occur at midspan. 
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Maximum Deflection 

Substituting 4x = , the location of the zero rotation, into Equation 5: 

 

( ) [ ]3340 804 4 4
6 6BEIδ = − − ( )320 4

2560 0 1280
6
853.33

B

B

EI

EI

δ

δ

−

= − −

−
=

 

 

In which we have once again used the Macaulay bracket. Thus: 

 

3
3

853.33 7.9 10  m
108 10

7.9 mm

Bδ
−−

= = − ×
×

= −
 

 

Since the deflection is negative we know it to be downward as expected.  

 

In summary then, the final displacements are: 

 

 
 



Structural Analysis III 

Dr. C. Caprani 30

2.2 Example 2 – Patch Load 

Problem 

In this example we take the same beam as before with the same load as before, except 

this time the 80 kN load will be spread over 4 m to give a UDL of 20 kN/m applied to 

the centre of the beam as shown: 
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Solution 

Step 1 

Since we are dealing with a patch load we must extend the applied load beyond D 

(due to the limitations of a Macaulay bracket) and put an upwards load from D 

onwards to cancel the effect of the extra load. Hence the free-body diagram is: 

 

 
 

Again we have taken the cut far enough to the right that all loading is accounted for. 

Taking moments about the cut, we have: 

 

( ) [ ] [ ]2 220 2040 2 6 0
2 2

M x x x x− + − − − =  

 

Again the Macaulay brackets have been used to indicate when terms should become 

zero. Hence: 

 

( ) [ ] [ ]2 220 2040 2 6
2 2

M x x x x= − − + −  
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Step 2 

Thus we write: 

 

 ( ) [ ] [ ]
2

2 2
2

20 2040 2 6
2 2

d yM x EI x x x
dx

= = − − + −  Equation 1 

 

Step 3 

Integrate Equation 1 to get: 

 

 [ ] [ ]3 3240 20 202 6
2 6 6

dyEI x x x C
dx θ= − − + − +  Equation 2 

 

Step 4 

Integrate Equation 2 to get: 

 

 [ ] [ ]4 4340 20 202 6
6 24 24

EIy x x x C x Cθ δ= − − + − + +  Equation 3 

As before, notice that we haven’t divided in by the denominators. 

 

Step 5 

The boundary conditions are: 

• Support A: 0y =  at 0x = ; 

• Support B: 0y =  at 8x = . 

 

So for the first boundary condition: 

 

 ( ) ( ) [ ]4340 200 0 0 2
6 24

EI = − − [ ]420 0 6
24

+ − ( )0C Cθ δ+ +  
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0Cδ =  

 

For the second boundary condition: 

 

 ( ) ( ) ( ) ( )3 4 440 20 200 8 6 2 8
6 24 24
293.33

EI C

C

θ

θ

= − + +

= −
 

 

Step 6 

Insert constants into Equations 2 & 3: 

 

 [ ] [ ]3 3240 20 202 6 293.33
2 6 6

dyEI x x x
dx

= − − + − −  Equation 4 

 

 [ ] [ ]4 4340 20 202 6 293.33
6 24 24

EIy x x x x= − − + − −  Equation 5 

 

To compare the effect of smearing the 80 kN load over 4 m rather than having it 

concentrated at midspan, we calculate the midspan deflection: 

 

( ) ( ) [ ]43 4
max

40 20 204 2 4 6
6 24 24

EIδ = − + − ( )293.33 4

760

−

= −

 

 

Therefore: 

 

max 3

max

760 760 0.00704 m
108 20

7.04 mm
EI

δ

δ

− −
= = = −

×
= −
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This is therefore a downward deflection as expected. Comparing it to the 7.9 mm 

deflection for the 80 kN point load, we see that smearing the load has reduced 

deflection, as may be expected. 

 

 
 

Problem: 

• Verify that the maximum deflection occurs at the centre of the beam; 

• Calculate the end rotations. 
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2.3 Example 3 – Moment Load 

Problem 

For this example we take the same beam again, except this time it is loaded by a 

moment load at midspan, as shown: 
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Solution 

Before beginning Macaulay’s Method, we need to calculate the reactions: 

 

 
 

Step 1 

The free-body diagram is: 

 
Taking moments about the cut, we have: 

 

( ) [ ]010 80 4 0M x x x+ − − =  

 

Notice a special point here. We have used our knowledge of the singularity function 

representation of a moment load to essentially locate the moment load at 4x =  in the 

equations above. Refer back to page 16 to see why this is done. Continuing: 

 

( ) [ ]010 80 4M x x x= − + −  
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Step 2 

 ( ) [ ]
2

0
2 10 80 4d yM x EI x x

dx
= = − + −  Equation 1 

 

Step 3 

 [ ]1210 80 4
2

dyEI x x C
dx θ= − + − +  Equation 2 

 

Step 4 

 [ ]2310 80 4
6 2

EIy x x C x Cθ δ= − + − + +  Equation 3 

 

Step 5 

We know 0y =  at 0x = , thus: 

 

 ( ) ( ) [ ]2310 800 0 0 4
6 2

EI = − + − ( )0

0

C C

C

θ δ

δ

+ +

=
 

0y =  at 8x = , thus: 

 
( ) ( ) ( )3 210 800 8 4 8

6 2
80
3

EI C

C

θ

θ

= − + +

= +
 

 

Step 6 

 [ ]1210 8080 4
2 3

dyEI x x
dx

= − + − +  Equation 4 
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 [ ]2310 80 804
6 2 3

EIy x x x= − + − +  Equation 5 

 

So for the deflection at C: 

 

( ) [ ]2310 804 4 4
6 2CEIδ = − + − ( )80 4

3
0CEIδ

+

=
 

 
 

Problem: 

• Verify that the rotation at A and B are equal in magnitude and sense; 

• Find the location and value of the maximum deflection. 
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2.4 Example 4 – Beam with Overhangs and Multiple Loads 

Problem 

For the following beam, determine the maximum deflection, taking 
3 220 10  kNmEI = × : 
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Solution 

As always, before beginning Macaulay’s Method, we need to calculate the reactions: 

 

 
 

Taking moments about B: 

 

 
( ) ( ) 240 2 10 2 2 8 40 0

2

2.5 kN i.e. 

E

E

V

V

⎧ ⎫⎛ ⎞− ⋅ + ⋅ ⋅ + − + =⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

= + ↑

 

 

Summing vertical forces: 

 

 
( )2.5 40 2 10 0

57.5 kN, i.e. 
B

B

V

V

+ − − ⋅ =

= + ↑
 

 

With the reactions calculated, we begin by drawing the free body diagram for 

Macaulay’s Method: 
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Note the following points: 

• The patch load has been extended all the way to the end of the beam and a 

cancelling load has been applied from D onwards; 

• The cut has been taken so that all forces applied to the beam are to the left of 

the cut. Though the 40 kNm moment is to the right of the cut, and so not in the 

diagram, its effect is accounted for in the reactions which are included. 

 

Taking moments about the cut: 

 

 ( ) [ ] [ ] [ ] [ ]2 210 1040 57.5 2 4 6 2.5 10 0
2 2

M x x x x x x+ − − + − − − − − =  

 

So we have Equation 1: 

 

 ( ) [ ] [ ] [ ] [ ]
2

2 2

2

10 1040 57.5 2 4 6 2.5 10
2 2

d yM x EI x x x x x
dx

= = − + − − − + − + −  
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Integrate for Equation 2: 

 

 [ ] [ ] [ ] [ ]2 3 3 2240 57.5 10 10 2.52 4 6 10
2 2 6 6 2

dyEI x x x x x C
dx θ= − + − − − + − + − +  

 

And again for Equation 3: 

 

 [ ] [ ] [ ] [ ]3 4 4 3340 57.5 10 10 2.52 4 6 10
6 6 24 24 6

EIy x x x x x C x Cθ δ= − + − − − + − + − + +  

 

Using the boundary condition at support B where 0y =  at 2x = : 

 

( ) ( ) [ ]3340 57.50 2 2 2
6 6

EI = − + − [ ]410 2 4
24

− − [ ]410 2 6
24

+ − [ ]32.5 2 10
6

+ − 2C Cθ δ+ +

 

Thus: 

 

 1602
3

C Cθ δ+ =  (a) 

 

The second boundary condition is 0y =  at 10x = : 

 

 ( ) ( ) ( ) ( ) ( ) [ ]33 3 4 440 57.5 10 10 2.50 10 8 6 4 10 10
6 6 24 24 6

EI = − + − + + − 10C Cθ δ+ +  

 

Hence: 
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 658010
3

C Cθ δ+ =  (b) 

 

Subtracting (a) from (b) gives: 

 

 64208 267.5
3

C Cθ θ= ⇒ = +  

 

And: 

 

 ( ) 1602 267.5 481.7
3

C Cδ δ+ = ⇒ = −  

 

Thus we have Equation 4: 

 

 [ ] [ ] [ ] [ ]2 3 3 2240 57.5 10 10 2.52 4 6 10 267.5
2 2 6 6 2

dyEI x x x x x
dx

= − + − − − + − + − +  

 

And Equation 5: 

 

 [ ] [ ] [ ] [ ]3 4 4 3340 57.5 10 10 2.52 4 6 10 267.5 481.7
6 6 24 24 6

EIy x x x x x x= − + − − − + − + − + −  

Since we are interested in finding the maximum deflection, we solve for the shear, 

bending moment, and deflected shape diagrams, in order to better visualize the 

beam’s behaviour: 
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So examining the above, the overall maximum deflection will be the biggest of: 

• Aδ  - the deflection of the tip of the cantilever at A – found from Equation 5 

using 0x = ; 

• Fδ  - the deflection of the tip of the cantilever at F – again got from Equation 5 

using 11x = ; 

• max BEδ  - the largest upward deflection somewhere between the supports – its 

location is found solving Equation 4 to find the x where 0θ = , and then 

substituting this value into Equation 5. 

 

 

Maximum Deflection Between B and E 

Since Equation 4 cannot be solved algebraically for x, we will use trial and error. 

Initially choose the midspan, where 6x = : 
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 ( ) ( ) ( ) [ ]32 2 3

6

40 57.5 10 106 4 2 6 6
2 2 6 6x

dyEI
dx =

= − + − + − [ ]22.5 6 10
2

+ − 267.5

5.83

+

= −

 

 

Try reducing x to get closer to zero, say 5.8x = : 

 

 

( ) ( ) ( ) [ ]32 2 3

5.8

40 57.5 10 105.8 3.8 1.8 5.8 6
2 2 6 6x

dyEI
dx =

= − + − + − [ ]22.5 5.8 10
2

+ − 267.5

0.13

+

= +
 

 

Since the sign of the rotation has changed, zero rotation occurs between 5.8x =  and 

6x = . But it is apparent that zero rotation occurs close to 5.8x = . Therefore, we will 

use 5.8x =  since it is close enough (you can check this by linearly interpolating 

between the values). 

 

So, using 5.8x = , from Equation 5 we have: 

 

 

( ) ( ) ( ) [ ]43 3 4

max

40 57.5 10 105.8 3.8 1.8 5.8 6
6 6 24 24

EI BEδ = − + − + − [ ]32.5 5.8 10
6

+ −

( )
max

267.5 5.8 481.7

290.5EI BEδ

+ −

= +

 

 

Thus we have: 

max 3

290.5 290.5 0.01453 m
20 10

14.53 mm

BE
EI

δ = + = + = +
×

= +
 

 

Since the result is positive it represents an upward deflection. 
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Deflection at A 

Substituting 0x =  into Equation 5 gives: 

 

 

( ) [ ]3340 57.50 0 2
6 6AEIδ = − + − [ ]410 0 4

24
− − [ ]410 0 6

24
+ − [ ]32.5 0 10

6
+ −

( )267.5 0 481.7
481.7AEIδ

+ −

= −

 

 

Hence 

3

481.7 481.7 0.02409 m
20 10

24.09 mm

A EI
δ = − = − = −

×
= −

 

 

Since the result is negative the deflection is downward. Note also that the deflection 

at A is the same as the deflection constant of integration, Cδ . This is as mentioned 

previously on page 19. 

 

Deflection at F 

Substituting 11x =  into Equation 5 gives: 

 

 

( ) ( ) ( ) ( ) ( )

( )

3 3 4 4 340 57.5 10 10 2.511 9 7 5 1
6 6 24 24 6

267.5 11 481.7
165.9

F

F

EI

EI

δ

δ

= − + − + +

+ −

= −

 

Giving: 

3

165.9 165.9 0.00830 m
20 10

8.30 mm

F EI
δ = − = − = −

×
= −
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Again the negative result indicates the deflection is downward. 

 

Maximum Overall Deflection 

The largest deviation from zero anywhere in the beam is thus at A, and so the 

maximum deflection is 24.09 mm, as shown: 
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2.5 Example 5 – Beam with Hinge 

Problem 

For the following prismatic beam, find the following: 

• The rotations at the hinge; 

• The deflection of the hinge; 

• The maximum deflection in span BE. 
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Solution 

Calculate the reactions first: 

 

 
 

This beam is made of two members: AB and BE. The Euler-Bernoulli deflection 

equation only applies to individual members, and does not apply to the full beam AB 

since there is a discontinuity at the hinge, B. The discontinuity occurs in the rotations 

at B, since the ends of members AB and BE have different slopes as they connect to 

the hinge. However, there is also compatibility of displacement at the hinge in that 

the deflection of members AB and BE must be the same at B – there is only one 

vertical deflection at the hinge. From the previous examples we know that each 

member will have two constant of integration, and thus, for this problem, there will 

be four constants in total. However, we have the following knowns: 

• Deflection at A is zero; 

• Rotation at A is zero; 

• Deflection at D is zero; 

• Deflection at B is the same for members AB and BE; 

Thus we can solve for the four constants and the problem as a whole. To proceed we 

consider each span separately initially. 
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Span AB 

The free-body diagram for the deflection equation is: 

 

 
 

Note that even though it is apparent that there will be tension on the top of the 

cantilever, we have retained our sign convention by taking ( )M x  as tension on the 

bottom. Taking moments about the cut: 

 

( ) 220360 130 0
2

M x x x+ − + =  

Hence, the calculations proceed as: 

 

 ( )
2

2
2

20130 360
2

d yM x EI x x
dx

= = − −   Equation (AB)1 

 

 2 3130 20360
2 6

dyEI x x x C
dx θ= − − +   Equation (AB)2 

 

 3 2 4130 360 20
6 2 24

EIy x x x C x Cθ δ= − − + +  Equation (AB)3 

 

At 0x = , 0y = : 
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 ( ) ( ) ( ) ( ) ( )3 2 4130 360 200 0 0 0 0 0
6 2 24

EI C C Cθ δ δ= − − + + ⇒ =  

 

At 0x = , 0A

dy
dx

θ = = : 

 

 ( ) ( ) ( ) ( )2 3130 200 0 360 0 0 0
2 6

EI C Cθ θ= − − + ⇒ =  

 

Thus the final equations are: 

 

 2 3130 20360
2 6

dyEI x x x
dx

= − −  Equation (AB)4 

 

 3 2 4130 360 20
6 2 24

EIy x x x= − −  Equation (AB)5 

 

Span BE 

The relevant free-body diagram is: 
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Thus: 

 

 ( ) [ ] [ ]100 2 50 50 4 0M x x x x+ − − − − =  

 

 ( ) [ ] [ ]
2

2 50 50 4 100 2d yM x EI x x x
dx

= = + − − −  Equation (BE)1 

 

 [ ] [ ]2 2250 50 1004 2
2 2 2

dyEI x x x C
dx θ= + − − − +  Equation (BE)2 

 

 [ ] [ ]3 3350 50 1004 2
6 6 6

EIy x x x C x Cθ δ= + − − − + +  Equation (BE)3 

 

At B, we can calculate the deflection from member AB’s Equation (AB)5. Thus: 

 

  

 
( ) ( ) ( )3 2 4130 360 204 4 4

6 2 24
1707

B

B

EI

EI

δ

δ

= − −

−
=

 

 

This is a downward deflection and must also be the deflection at B for member BE, so 

from Equation (BE)3: 

 

 ( ) [ ]331707 50 500 0 4
6 6

EI
EI

−⎛ ⎞ = + −⎜ ⎟
⎝ ⎠

[ ]3100 0 2
6

− − ( )0

1707

C C

C

θ δ

δ

+ +

= −
 

 

Notice that again we find the deflection constant of integration to be the value of 

deflection at the start of the member. 
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Representing the deflection at support D, we know that at 4x = , 0y =  for member 

BE. Thus using Equation (BE)3 again: 

 

 ( ) ( ) [ ]3350 500 4 4 4
6 6

EI = + − ( ) ( )3100 2 4 1707
6

327

C

C

θ

θ

− + −

= +
  

 

Giving Equation (BE)4 and Equation (BE)5 respectively as: 

 

 [ ] [ ]2 2250 50 1004 2 327
2 2 2

dyEI x x x
dx

= + − − − +   

 

 [ ] [ ]3 3350 50 1004 2 327 1707
6 6 6

EIy x x x x= + − − − + −   

 

Rotation at B for Member AB 

Using Equation (AB)4: 

 

 
( ) ( ) ( )2 3130 204 360 4 4

2 6
613

BA

BA

EI

EI

θ

θ

= − −

−
=

  

 

The negative sign indicates an anticlockwise movement from the x-axis: 
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Rotation at B for Member BE 

Using Equation (BE)4: 

 

 
( ) [ ]2250 500 0 4

2 2BEEIθ = + − [ ]2100 0 2
2

− − 327

327
BE EI

θ

+

+
=

  

 

Again the constant of integration is the starting displacement of the member. The 

positive sign indicates clockwise movement from the x-axis: 

 

 
Thus at B the deflected shape is: 

 

 
 

Deflection at B 

Calculated previously to be 1707B EIδ = − . 

 

Maximum Deflection in Member BE 

There are three possibilities: 
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• The maximum deflection is at B – already known; 

• The maximum deflection is at E – to be found; 

• The maximum deflection is between B and D – to be found. 

 

The deflection at E is got from Equation (BE)5: 

 

 
( ) ( ) ( ) ( )3 3 350 50 1006 2 4 327 6 1707

6 6 6
1055

E

E

EI

EI

δ

δ

= + − + −

+
=

 

 

And this is an upwards displacement which is smaller than that of the movement at B. 

 

To find the maximum deflection between B and D, we must identify the position of 

zero rotation. Since at the start of the member (i.e. at B) we know the rotation is 

positive ( 327BE EIθ = + ), zero rotation can only occur if the rotation at the other end 

of the member (rotation at E) is negative. However, we know the rotation at E is the 

same as that at D since DE is straight because there is no bending in it. Hence we find 

the rotation at D to see if it is negative, from Equation (BE)4: 

 

 
( ) [ ]2250 504 4 4

2 2DEIθ = + − ( )2100 2 327
2

527
D EI

θ

− +

+
=

  

 

Since this is positive, there is no point at which zero rotation occurs between B and D 

and thus there is no position of maximum deflection. Therefore the largest deflections 

occur at the ends of the member, and are as calculated previously: 
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As a mathematical check on our structural reasoning above, we attempt to solve 

Equation (BE)4 for x when 0dy
dx

= : 

 

 
( ) [ ] [ ]2 22

2 2 2

50 50 1000 4 2 327
2 2 2

50 50 1000 8 16 4 4 327
2 2 2

EI x x x

x x x x x

= + − − − +

= + − + − − + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

 

Collecting terms, we have: 

 

 ( ) ( )

2

2

50 50 100 400 400 800 4000 327
2 2 2 2 2 2 2

0 0 0 527
0 527

x x

x x

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + − + + + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= + +

=

 

 

Since this is not possible, there is no solution to the above problem. That is, there is 

no position x at which 0dy
dx

= , and thus there is no maximum deflection between B 

and D. Thus the largest movement of member BE is the deflection at B, 1707 EI− : 
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As an aside, we can check our calculation for the deflection at E using the S Rθ=  

rule for small displacements. Thus: 

 

 527 10542E EI EI
δ = ⋅ =  

 

Which is very close to the previous result of 1055 EI . 

 

This solution has been put into Excel to give plots of the deflected shape, as follows:
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X global X for AB X for BE dy/dx AB y AB dy/dx BE y BE
0.00 0.00 -4.00 0.0 0.0 727.0 -3548.3
0.25 0.25 -3.75 -86.0 -10.9 678.6 -3372.7
0.50 0.50 -3.50 -164.2 -42.3 633.3 -3208.8
0.75 0.75 -3.25 -234.8 -92.4 591.1 -3055.8
1.00 1.00 -3.00 -298.3 -159.2 552.0 -2913.0
1.25 1.25 -2.75 -354.9 -241.0 516.1 -2779.6
1.50 1.50 -2.50 -405.0 -336.1 483.3 -2654.7
1.75 1.75 -2.25 -448.8 -442.9 453.6 -2537.7
2.00 2.00 -2.00 -486.7 -560.0 427.0 -2427.7
2.25 2.25 -1.75 -518.9 -685.8 403.6 -2323.9
2.50 2.50 -1.50 -545.8 -819.0 383.3 -2225.6
2.75 2.75 -1.25 -567.8 -958.3 366.1 -2132.0
3.00 3.00 -1.00 -585.0 -1102.5 352.0 -2042.3
3.25 3.25 -0.75 -597.9 -1250.4 341.1 -1955.8
3.50 3.50 -0.50 -606.7 -1401.1 333.3 -1871.5
3.75 3.75 -0.25 -611.7 -1553.5 328.6 -1788.9
4.00 4.00 0.00 -613.3 -1706.7 327.0 -1707.0
4.25 0.25 328.6 -1625.1
4.50 0.50 333.3 -1542.5
4.75 0.75 341.1 -1458.2
5.00 1.00 352.0 -1371.7
5.25 1.25 366.1 -1282.0
5.50 1.50 383.3 -1188.4
5.75 1.75 403.6 -1090.1
6.00 2.00 427.0 -986.3
6.25 2.25 450.4 -876.6
6.50 2.50 470.8 -761.4
6.75 2.75 487.9 -641.5
7.00 3.00 502.0 -517.7
7.25 3.25 512.9 -390.7
7.50 3.50 520.8 -261.5
7.75 3.75 525.4 -130.6
8.00 4.00 527.0 1.0
8.25 4.25 527.0 132.8
8.50 4.50 527.0 264.5
8.75 4.75 527.0 396.3
9.00 5.00 527.0 528.0
9.25 5.25 527.0 659.8 dy/dx AB  = 130*x^2/2-360*x-20*x^3/6
9.50 5.50 527.0 791.5 y AB  = 130*x^3/6-360*x^2/2-20*x^4/24
9.75 5.75 527.0 923.3 dy/dx BE  = 50*x^2/2+50*MAX(x-4,0)^2/2-100*MAX(x-2,0)^2/2+327
10.00 6.00 527.0 1055.0 y BE  = 50*x^3/6+50*MAX(x-4,0)^3/6-100*MAX(x-2,0)^3/6+327*x-1707

Macaulay's Method - Determinate Beam with Hinge

Equation used in the Cells
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2.6 Problems 

1. (DT004/3 A’03) Determine the rotation and the deflection at C for the following 

beam. Take 2200 kN/mmE =  and 8 48 10  mmI = × . (Ans. 4.46 mm, 0.0775 rads). 

 

40 kN

A B C

15 kN/m

6 m 2 m
 

 

2. (DT004/3 S’04) Determine the rotation at A, the rotation at B, and the deflection at 

C, for the following beam. Take 2200 kN/mmE =  and 8 48 10  mmI = × . 

(Ans. 365A EIθ = ; 361.67B EIθ = ; 900c EIδ = ). 

 

2 m

50 kN

A BC

20 kN/m

4 m 2 m
 

 

3. (DT004/3 A’04) Determine the deflection at C, for the following beam.  Check 

your answer using 4 35 384 48C wL EI PL EIδ = + . Take 2200 kN/mmE =  and 
8 48 10  mmI = × . The symbols w, L and P have their usual meanings. (Ans. 5.34 

mm). 

 

50 kN

A BC

12 kN/m

6 m
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4. (DT004/3 S’05) Determine the deflection at B and D for the following beam. Take 
2200 kN/mmE =  and 8 48 10  mmI = × . (Ans. 2.95 mm ↑ , 15.1 mm ↓ ). 

 

A
CB

12 kN/m

3 m

50 kN

3 m 3 m

D

 
 

5. (DT004/3 A’05) Verify that the rotation at A is smaller than that at B for the 

following beam. Take 2200 kN/mmE =  and 8 48 10  mmI = × . (Ans. 

186.67A EIθ = − ; 240B EIθ = − ; 533.35C EIδ = − ). 

 

A BC

20 kN/m

4 m 4 m
 

 

6. (DT004/3 S’06) Determine the location of the maximum deflection between A and 

B, accurate to the nearest 0.01 m and find the value of the maximum deflection 

between A and B, for the following beam. Take 2200 kN/mmE =  and 
8 48 10  mmI = × .  (Ans. 2.35 m; -2.55 mm) 

 

A
B

15 kN/m

3 m 3 m
C

80 kNm

2 m
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7. (DT004/3 A’06) Determine the location of the maximum deflection between A 

and B, accurate to the nearest 0.01 m and find the value of the maximum 

deflection between A and B, for the following beam. Take 2200 kN/mmE =  and 
8 48 10  mmI = × . (Ans. 2.40 m; 80 EI ). 

 

40 kN

A B C

15 kN/m

6 m 2 m
 

 

8. (DT004/3 S2R’07) Determine the rotation at A, the rotation at B, and the 

deflection at C, for the following beam.  Check your answer using 
4 35 384 48C wL EI PL EIδ = + . Take 2200 kN/mmE =  and 8 48 10  mmI = × . The 

symbols w, L and P have their usual meanings. (Ans. -360/EI, +360/EI, -697.5/EI) 

 

80 kN

A BC

20 kN/m

6 m
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3. Indeterminate Beams 

3.1 Basis 

In solving statically determinate structures, we have seen that application of 

Macaulay’s Method gives two unknowns: 

1. Rotation constant of integration; 

2. Deflection constant of integration. 

These unknowns are found using the known geometrically constraints (or boundary 

conditions) of the member. For example, at a pin or roller support we know the 

deflection is zero, whilst at a fixed support we know that both deflection and rotation 

are zero. Form what we have seen we can conclude that in any stable statically 

determinate structure there will always be enough geometrical constraints to find the 

two knowns – if there isn’t, the structure simply is not stable, and is a mechanism. 

 

Considering indeterminate structures, we will again have the same two unknown 

constants of integration, in addition to the extra unknown support reactions. 

However, for each extra support introduced, we have an associated geometric 

constraint, or known displacement. Therefore, we will always have enough 

information to solve any structure. It simply falls to us to express our equations in 

terms of our unknowns (constants of integration and redundant reactions) and apply 

our known displacements to solve for these unknowns, thus solving the structure as a 

whole. 

 

This is best explained by example, but keep in mind the general approach we are 

using. 
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3.2 Example 6 – Propped Cantilever with Overhang 

Problem 

Determine the maximum deflection for the following prismatic beam, and solve for 

the bending moment, shear force and deflected shape diagrams. 
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Solution 

Before starting the problem, consider the qualitative behaviour of the structure so that 

we have an idea of the reactions’ directions and the deflected shape: 

 

 
 

Since this is a 1˚ indeterminate structure we must choose a redundant and the use the 

principle of superposition: 

 

 
 

Next, we express all other reactions in terms of the redundant, and draw the free-body 

diagram for Macaulay’s Method: 
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Proceeding as usual, we take moments about the cut, being careful to properly locate 

the moment reaction at A using the correct discontinuity function format: 

 

 ( ) ( )[ ] ( ) [ ]06 900 100 6 0M x R x R x R x− − − − − − =  

 

Since x will always be positive we can remove the Macaulay brackets for the moment 

reaction at A, and we then have: 

 

 ( ) ( ) ( ) [ ]
2

0
2

6 900 100 6d yM x EI R x R x R x
dx

= = − + − + −  Equation 1 

 

From which: 

 

 ( ) ( ) [ ]22100
6 900 6

2 2
Rdy REI R x x x C

dx θ

−
= − + + − +  Equation 2 

 

And: 

 

 ( ) ( ) [ ]32 36 900 100
6

2 6 6
R R REIy x x x C x Cθ δ

− −
= + + − + +  Equation 3 

 

Thus we have three unknowns to solve for, and we have three knowns we can use: 

1. no deflection at A – fixed support; 

2. no rotation at A – fixed support; 

3. no deflection at B – roller support. 

As can be seen the added redundant support both provides an extra unknown 

reaction, as well as an extra known geometric condition. 
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Applying the first boundary condition, we know that at 0x = , 0y = : 

 

 ( ) ( ) ( ) ( ) ( ) [ ]32 36 900 100
0 0 0 0 6

2 6 6
R R REI
− −

= + + − ( )0

0

C C

C

θ δ

δ

+ +

=
 

 

Applying the second boundary condition, at 0x = , 0dy
dx

= : 

 

 ( ) ( )( ) ( ) ( ) [ ]22100
0 6 900 0 0 0 6

2 2
R REI R

−
= − + + −

0

C

C

θ

θ

+

=
 

 

Applying the final boundary condition, at 6x = , 0y = : 

 

 
( ) ( ) ( ) ( ) ( ) [ ]32 36 900 100
0 6 6 6 6

2 6 6
R R REI
− −

= + + −

( ) ( )0 108 16200 3600 36R R= − + −
 

 

Thus we have an equation in R and we solve as: 

 

0 72 12600
175 kN 

R
R
= −

= ↑
 

 

The positive answer means the direction we assumed initially was correct. We can 

now solve for the other reactions: 

 

 
( )6 900 6 175 900 150 kNm

100 100 175 75 kN i.e. 
A

A

M R

V R

= − = − = +

= − = − = − ↓
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We now write Equations 4 and 5: 

 

 [ ]2275 175150 6
2 2

dyEI x x x
dx

−
= + + −  

 

 [ ]32 3150 75 175 6
2 6 6

EIy x x x−
= + + −  

 

Finally to find the maximum deflection, we see from the qualitative behaviour of the 

structure that it will either be at the tip of the overhang, C, or between A and B. For 

the deflection at C, where 9x = , we have, from Equation 5: 

 

 
( ) ( ) ( )2 3 3150 75 1759 9 3

2 6 6
2250

C

C

EI

EI

δ

δ

−
= + +

−
=

 

 

This is downwards as expected. To find the local maximum deflection in Span AB, 

we solve for its location using Equation 4: 

 

( ) [ ]2275 1750 150 6
2 2

EI x x x−
= + + − since 6

0 150 37.5
150 4 m
37.5

x

x

x

≤

= −

= =

 

 

Therefore from Equation 5: 
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( ) ( ) [ ]32 3

max

150 75 1754 4 4 6
2 6 6

EI ABδ −
= + + −

max

400AB
EI

δ +
=

 

 

The positive result indicates an upward displacement, as expected. Therefore the 

maximum deflection is at C, and the overall solution is: 
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3.3 Example 7 – Indeterminate Beam with Hinge 

Problem 

For the following prismatic beam, find the rotations at the hinge, the deflection of the 

hinge, and the maximum deflection in member BE. 

 

 
 



Structural Analysis III 

Dr. C. Caprani 70

Solution 

This is a 1 degree indeterminate beam. Once again we must choose a redundant and 

express all other reactions (and hence displacements) in terms of it. Considering first 

the expected behaviour of the beam: 

 

 
 

The shear in the hinge, V, is the ideal redundant, since it provides the obvious link 

between the two members: 

 

 
For member AB: 

 

 

24 about 0 20 4 0 160 4
2

0 20 4 0 80

A A

y A A

M A M V M V

F V V V V

= − ⋅ − = ∴ = +

= − ⋅ − = ∴ = +

∑

∑
 

 

And for member BE: 
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 about 0 6 4 100 2 0 200 3

0 0 100 2
D D

y D E E

M E V V V V
F V V V V V

= − ⋅ + = ∴ = −

= + − = ∴ = −
∑
∑

 

 

Thus all reactions are known in terms of our chosen redundant. Next we calculate the 

deflection curves for each member, again in terms of the redundant. 

 

Member AB 

The relevant free-body diagram is: 

 

 
 

Taking moments about the cut gives: 

 

 ( ) ( ) ( )0 220160 4 80 0
2

M x V x V x x+ + − + + =  

 

Thus, Equation (AB)1 is: 

 

 ( ) ( ) ( )
2

0 2
2

2080 160 4
2

d yM x EI V x V x x
dx

= = + − + −   

 

And Equations (AB)2 and 3 are: 
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 ( ) ( )2 1 380 20160 4
2 6

VdyEI x V x x C
dx θ

+
= − + − +   

 

 ( ) ( )3 2 480 160 4 20
6 2 24

V V
EIy x x x C x Cθ δ

+ +
= − − + +   

 

Using the boundary conditions, 0x = , we know that 0dy
dx

= . Therefore we know 

0Cθ = . Also, since at 0x = , 0y =  we know 0Cδ = . These may be verified by 

substitution into Equations 2 and 3. Hence we have: 

 

 ( ) ( )2 1 380 20160 4
2 6

VdyEI x V x x
dx

+
= − + −  Equation (AB)4 

 

 ( ) ( )3 2 480 160 4 20
6 2 24

V V
EIy x x x

+ +
= − −  Equation (AB)5 

 

Member BE 

Drawing the free-body diagram, as shown, and taking moments about the cut gives: 

 

 ( ) [ ] ( )[ ]100 2 200 3 4 0M x x Vx V x+ − − − − − =  
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Thus Equation (BE)1 is: 

 

 ( ) ( )[ ] [ ]
2

2 200 3 4 100 2d yM x EI Vx V x x
dx

= = + − − − −  

 

Giving Equations (BE)2 and 3 as: 

 

 ( ) [ ] [ ]2 22 200 3 1004 2
2 2 2

Vdy VEI x x x C
dx θ

−
= + − − − +  

 

 ( ) [ ] [ ]3 33 200 3 1004 2
6 6 6

VVEIy x x x C x Cθ δ

−
= + − − − + +  

 

The boundary conditions for this member give us 0y =  at 4x = , for support D. 

Hence: 

 

 ( ) ( ) ( ) [ ]33 200 3
0 4 4 4

6 6
VVEI

−
= + − ( )3100 2 4

6
C Cθ δ− + +  
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Which gives: 

 

 32 4004 0
3 3

C C Vθ δ+ + − =  (a) 

 

For support E, we have 0y =  at 6x = , giving: 

 

 ( ) ( ) ( ) ( ) ( )3 3 3200 3 1000 6 2 4 6
6 6 6

VVEI C Cθ δ

−
= + − + +  

 

Thus: 

 

 6 32 800 0C C Vθ δ+ + − − =  (b) 

 

Subtracting (a) from (b) gives: 

 

 

64 20002 0 0
3 3

32 1000
3 3

C V

C V

θ

θ

+ + − =

= − +
 

 

And thus from (b): 

 

 
32 10006 32 800 0
3 3

32 1200

V C V

C V

δ

δ

⎛ ⎞− + + + − − =⎜ ⎟
⎝ ⎠

= −
  

 

Thus we write Equations (BE)4 and 5 respectively as: 
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 ( ) [ ] [ ]2 22 200 3 100 32 10004 2
2 2 2 3 3

Vdy VEI x x x V
dx

− ⎛ ⎞= + − − − + − +⎜ ⎟
⎝ ⎠

 

 

 ( ) [ ] [ ] ( )3 33 200 3 100 32 10004 2 32 1200
6 6 6 3 3

VVEIy x x x V x V
− ⎛ ⎞= + − − − + − + + −⎜ ⎟

⎝ ⎠
 

 

Thus both sets of equations for members AB and BE are ion terms of V – the shear 

force at the hinge. Now we enforce compatibility of displacement at the hinge, in 

order to solve for V. 

 

For member AB, the deflection at B is got from Equation (AB)5 for 4x = : 

 

 

( ) ( ) ( ) ( ) ( )3 2 480 160 4 204 4 4
6 2 24

2560 32 6401280 32
3 3 3
64 640
3

BA

V V
EI

V V

V

δ
+ +

= − −

= + − − −

= − −

  

 

And for member BE, the deflection at B is got from Equation (BE)5 for 0x = : 

 

 

( ) ( ) [ ]33 200 3
0 0 4

6 6BE

VVEIδ
−

= + − [ ]3100 0 2
6

− − ( )0

32 1200

C C

C
V

θ δ

δ

+ +

=

= −

 

 

Since BA BE Bδ δ δ≡ ≡ , we have: 
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64 640 32 1200
3

160 560
3

10.5 kN

V V

V

V

− − = −

− = −

= +

 

 

The positive answer indicates we have chosen the correct direction for V. Thus we 

can work out the relevant quantities, recalling the previous free-body diagrams: 

• ( )160 4 10.5 202 kNmAM = + =  

• 80 10.5 90.5 kNAV = + = ↑  

• ( )200 3 10.5 168.5 kNDV = − = ↑  

• ( )100 2 10.5 79 kNEV = − = ↓  

 

Deformations at the Hinge 

For member BE we now know: 

 

 ( )32 10.5 1200 864Cδ = − = −  

 

And since this constant is the initial deflection of member BE: 

 

 
864
864

B

B

EI

EI

δ

δ

= −
−

=
 

 

Which is a downwards deflection as expected. The rotation at the hinge for member 

AB is got from Equation (AB)4 
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( ) ( ) ( )2 390.5 204 202 4 4

2 6
297.3

BA

BA

EI

EI

θ

θ

= − −

−
=

 

 

The sign indicates movement in the direction shown: 

 

Also, for member BE, knowing V gives: 

 

 ( )32 100010.5 221.3
3 3

Cθ = − + = +  

 

And so the rotation at the hinge for member BE is: 

 

 
( ) [ ]2210.5 168.50 0 4

2 2BEEIθ = + − [ ]2100 0 2
2

− − 221.3

221.3
BE EI

θ

+

+
=

 

 

The movement is therefore in the direction shown: 

 

The deformation at the hinge is thus summarized as: 
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Maximum Deflection in Member BE 

There are three possibilities: 

• The deflection at B; 

• A deflection in B to D; 

• A deflection in D to E. 

We check the rotation at D to see if there is a point of zero rotation between B and D. 

If there is then we have a local maximum deflection between B and D. If there isn’t 

such a point, then there is no local maximum deflection. From Equation (BE)4: 

 

 
( ) [ ]2210.5 168.54 4 4

2 2DEIθ = + − ( )2100 2 221.3
2

105.3
D EI

θ

− +

+
=

 

 

Therefore since the deflection at both B and D are positive there is no point of zero 

rotation between B and D, and thus no local maximum deflection. Examining the 

deflected shape, we see that we must have a point of zero rotation between D and E 

since the rotation at E must be negative: 

 

 
 



Structural Analysis III 

Dr. C. Caprani 79

We are interested in the location x where we have zero rotation between D and E. 

Therefore we use Equation (BE)4, with the knowledge that 4 6x≤ ≤ : 

 

 

( ) ( ) ( )

( ) ( )

( )

( )

2 22

2 2 2

2

2

10.5 168.5 1000 4 2 221.3
2 2 2

10.5 168.5 1000 8 16 4 4 221.3
2 2 2
10.5 168.5 100 168.5 1000 8 4

2 2 2 2 2
168.5 10016 4 221.3

2 2
0 39.5 474 1369.3

EI x x x

x x x x x

x x

x x

= + − − − +

= + − + − − + +

⎛ ⎞ ⎛ ⎞= + − + − + ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞+ − ⋅ +⎜ ⎟
⎝ ⎠

= − +

 

 

Thus we solve for x as: 

 

 
2474 474 4 38.5 1369.3
2 39.5

7.155 m or 4.845 m

x ± − ⋅ ⋅
=

⋅
=

 

 

Since 7.155 m is outside the length of the beam, we know that the zero rotation, and 

hence maximum deflection occurs at 4.845 mx = . Using Equation (BE)5: 

 

 
( ) ( ) ( )3 33

max

max

10.5 168.5 1000.845 2.845 221.3 4.845 864
6 6 6
40.5

EI DE x

DE
EI

δ

δ

= + − + −

+
=

 

 

Which is an upwards displacement, as expected, since it is positive. Since the 

deflection at B is greater in magnitude, the maximum deflection in member BE is the 

deflection at B, 864 EI . 
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The final solution for the problem is summarized as: 

 

 
 

This solution has been put into Excel to give plots of the deflected shape, as follows: 
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X global X for AB X for BE dy/dx AB y AB dy/dx BE y BE
0.00 0.00 -4.00 0.0 0.0 305.3 -1861.3
0.25 0.25 -3.75 -47.7 -6.1 295.2 -1786.3
0.50 0.50 -3.50 -90.1 -23.4 285.6 -1713.7
0.75 0.75 -3.25 -127.5 -50.7 276.8 -1643.4
1.00 1.00 -3.00 -160.1 -86.8 268.6 -1575.2
1.25 1.25 -2.75 -188.3 -130.4 261.0 -1509.1
1.50 1.50 -2.50 -212.4 -180.6 254.1 -1444.7
1.75 1.75 -2.25 -232.8 -236.3 247.9 -1381.9
2.00 2.00 -2.00 -249.7 -296.7 242.3 -1320.7
2.25 2.25 -1.75 -263.4 -360.9 237.4 -1260.7
2.50 2.50 -1.50 -274.3 -428.1 233.1 -1201.9
2.75 2.75 -1.25 -282.6 -497.8 229.5 -1144.1
3.00 3.00 -1.00 -288.8 -569.3 226.6 -1087.1
3.25 3.25 -0.75 -293.0 -642.0 224.3 -1030.7
3.50 3.50 -0.50 -295.6 -715.6 222.6 -974.9
3.75 3.75 -0.25 -297.0 -789.7 221.7 -919.4
4.00 4.00 0.00 -297.3 -864.0 221.3 -864.0
4.25 0.25 0.0 0.0 221.7 -808.6
4.50 0.50 0.0 0.0 222.6 -753.1
4.75 0.75 0.0 0.0 224.3 -697.3
5.00 1.00 0.0 0.0 226.6 -640.9
5.25 1.25 0.0 0.0 229.5 -583.9
5.50 1.50 0.0 0.0 233.1 -526.1
5.75 1.75 0.0 0.0 237.4 -467.3
6.00 2.00 0.0 0.0 242.3 -407.3
6.25 2.25 0.0 0.0 244.8 -346.3
6.50 2.50 0.0 0.0 241.6 -285.4
6.75 2.75 0.0 0.0 232.9 -226.0
7.00 3.00 0.0 0.0 218.6 -169.4
7.25 3.25 0.0 0.0 198.7 -117.2
7.50 3.50 0.0 0.0 173.1 -70.6
7.75 3.75 0.0 0.0 142.0 -31.1
8.00 4.00 0.0 0.0 105.3 0.0
8.25 4.25 0.0 0.0 68.3 21.6
8.50 4.50 0.0 0.0 36.2 34.5
8.75 4.75 0.0 0.0 9.0 40.1
9.00 5.00 0.0 0.0 -13.2 39.5
9.25 5.25 0.0 0.0 -30.5 33.9 dy/dx AB  = (80+V)*x^2/2-(160+4*V)*x-20*x^3/6
9.50 5.50 0.0 0.0 -42.8 24.7 y AB  = (80+V)*x^3/6-(160+4*V)*x^2/2-20*x^4/24
9.75 5.75 0.0 0.0 -50.2 12.9 dy/dx BE  = V*x^2/2+(200-3*V)*MAX(x-4,0)^2/2-100*MAX(x-2,0)^2/2+const1
10.00 6.00 0.0 0.0 -52.7 0.0 y BE  = V*x^3/6+(200-3*V)*MAX(x-4,0)^3/6-100*MAX(x-2,0)^3/6+const1*x+const2

Macaulay's Method - Indeterminate Beam with Hinge

Equation used in the Cells
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3.4 Problems 

1. For the beam shown, find the reactions and draw the bending moment, shear 

force, and deflected shape diagrams. Determine the maximum deflection and 

rotation at B in terms of EI. 

 

 
 

2. For the beam shown, find the reactions and draw the bending moment, shear 

force, and deflected shape diagrams. Determine the maximum deflection and 

rotation at B in terms of EI. 

 

 
 

3. For the beam shown, find the reactions and draw the bending moment, shear 

force, and deflected shape diagrams. Determine the maximum deflection and 

rotation at B in terms of EI. 
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4. For the beam shown, find the reactions and draw the bending moment, shear 

force, and deflected shape diagrams. Determine the maximum deflection and the 

rotations at A, B, and C in terms of EI.  

 

 
 

5. For the beam shown, find the reactions and draw the bending moment, shear 

force, and deflected shape diagrams. Determine the maximum deflection and the 

rotations at A, B, and C in terms of EI. 
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4. Indeterminate Frames 

4.1 Introduction 

Macaulay’s method is readily applicable to frames, just as it is to beams. Both 

statically indeterminate and determinate frames can be solved. The method is applied 

as usual, but there is one extra factor: 

 

Compatibility of displacement must be maintained at joints. 

 

This means that: 

• At rigid joints, this means that the rotations of members meeting at the joint 

must be the same. 

• At hinge joints we can have different rotations for each member, but the 

members must remain connected. 

• We must (obviously) still impose the boundary conditions that the supports 

offer the frame. 

 

In practice, Macaulay’s Method is only applied to basic frames because the number 

of equations gets large otherwise. For more complex frames other forms of analysis 

can be used (such as moment distribution, virtual work, Mohr’s theorems, etc.) to 

determine the bending moments. Once these are known, the defections along 

individual members can then be found using Macaulay’s method applied to the 

member itself. 
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4.2 Example 8 – Simple Frame 

Problem 

For the following prismatic frame, find the horizontal deflection at C and draw the 

bending moment diagram: 
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Solution 

Before starting, assess the behaviour of the frame: 

 

 
 

The structure is 1 degree indeterminate. Therefore we need to choose a redundant. 

Choosing BV , we can now calculate the reactions in terms of the redundant by taking 

moments about A: 

 

 
100 3 6 0

6 300
A

A

M R
M R

+ ⋅ − =
= −

 

 

Thus the reactions are: 
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And we can now draw a free-body diagram for member AB, in order to apply 

Macaulay’s Method to AB: 

 

 
 

Taking moments about the cut, we have: 

 

 ( ) ( )[ ]06 300 0M x R x Rx− − + =  

 

Thus: 

 

 ( ) ( )[ ]
2

0

2 6 300d yM x EI R x Rx
dx

= = − −  Equation 1 
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Giving: 

 

 ( )[ ]1 26 300
2

dy REI R x x C
dx θ= − − +  Equation 2 

 

 ( ) [ ]2 36 300
2 6

R REIy x x C x Cθ δ

−
= − + +  Equation 3 

 

Applying 0y =  and 0dy
dx

=  at 0x =  gives us 0Cθ =  and 0Cδ = . Therefore: 

 

 ( )[ ]1 26 300
2

dy REI R x x
dx

= − −  Equation 4 

 

 ( ) [ ]2 36 300
2 6

R REIy x x
−

= −  Equation 5 

 

Further, we know that at 6x = ,  0y =  because of support B. Therefore: 

 

 

( ) ( ) ( ) ( )2 36 300
0 6 6

2 6
0 3 150

75 kN i.e.

R REI

R R
R

−
= −

= − −

= + ↑

 

 

Thus we now have: 
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And the deflected shape is: 

 

 
 

In order to calculate Cxδ , we need to look at the deflections at C more closely: 
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From this diagram, it is apparent that the deflection at C is made up of: 

• A deflection due to the rotation of joint B, denoted Bθδ ; 

• A deflection caused by bending of the cantilever member BC, cantiδ . 

 

From S Rθ= , we know that: 

 

3B Bθδ θ=  

 

So to find Bθ  we use Equation 4 with 6x = : 

 

 
( ) ( )275150 6 6

2
450

B

B

EI

EI

θ

θ

= −

−
=

 

 

The sense of the rotation is thus as shown: 
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The deflection at C due to the rotation of joint B is: 

 

 

4503

1350

B EI

EI

θδ
⎛ ⎞= ⎜ ⎟
⎝ ⎠

=
 

 

Note that we don’t need to worry about the sign of the rotation, since we know that C 

is moving to the right, and that the rotation at B is aiding this movement. 

 

The cantilever deflection of member BC can be got from standard tables as: 

 

 
3 3

canti

100 3 900
3 3
PL
EI EI EI

δ ⋅
= = =  

 

We can also get this using Macaulay’s Method applied to member BC: 

 

 
 

Note the following: 
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• Applying Macaulay’s method to member BC will not give the deflection at C – 

it will only give the deflection at C due to bending of member BC. Account 

must be made of the rotation of joint B. 

• The axis system for Macaulay’s method is as previously used, only turned 

through 90 degrees. Thus negative deflections are to the right, as shown. 

 

Taking moments about the cut: 

 

 ( ) [ ]0300 100 0M x x x+ − =  

 

 ( ) [ ]
2

0

2 100 300d yM x EI x x
dx

= = −  

 

 [ ]12100 300
2

dyEI x x C
dx θ= − +  

 

 [ ]23100 300
6 2

EIy x x C x Cθ δ= − + +  

 

But we know that 0y =  and 0dy
dx

=  at 0x =  so 0Cθ =  and 0Cδ = . Therefore: 

 

 [ ]23100 300
6 2

EIy x x= −  

 

And for the cantilever deflection at C: 
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( ) ( )3 2

canti

canti

100 3003 3
6 2

900

EI

EI

δ

δ

= −

−
=

 

 

This is the same as the standard table result, as expected. Further, since a negative 

answer here means a deflection to the right, the total deflection to the right at C is: 

 

 

canti

1350 900

2250

Cx B

EI EI

EI

θδ δ δ= +

= +

=
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4.3 Problems 

1. For the prismatic frame shown, find the reactions and draw the bending moment, 

shear force, and deflected shape diagrams. Verify the following displacements: 

80B EIθ = ; 766.67Dy EIδ = ↓ ; 200Bx EIδ =  (direction not given because to do 

so would influence answer). 

 
 

2. For the prismatic frame shown, find the reactions and draw the bending moment, 

shear force, and deflected shape diagrams. Verify the following displacements: 

200C EIθ = ; 666.67By EIδ = ↓ ; 400Dx EIδ =  (again direction not given because 

to do so would influence answer). 
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5. Past Exam Questions 

5.1 Summer 2003 

 

(Ans.10.56 mm upwards) 
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5.2 Summer 2004 

 

 

(Ans. 1.5 mm up; 5.63 mm down.) 

Note: In the present course, the part (a) of this problem would also be solved using 

Macaulay’s Method. 
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5.3 Summer 2007 
4.  (a)  

 

Part (a) not relevant 

 

(b) For the beam shown in Fig. Q4(b), using Macaulay’s Method: 

 

(i) Determine the vertical reaction at joint B; 

 

(ii) Show that the moment reaction at joint A is 2 8wL . 

              (10 marks) 

 

w

L

MA

A B

R

FIG. Q4(b)
 

 

(Ans. 3 8R wL= ) 
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5.4 Autumn 2007 
4.  (a)  

 

Part (a) not relevant 

 

(b) For the beam shown in Fig. Q4, using Macaulay’s Method and the results from part (a): 

 

(i) Determine the deflection at C; 

 

(ii) Determine the maximum deflection in span AB. 

             (10 marks) 

 

Note: 

 Take 3 2200 10  kNmEI = × for all members. 

 

100 kN

A B
9 m 3 m

FIG. Q4

C

 

 

 

(Ans. 14.6 mm↓ , 4.5 mm↑ ) 
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5.5 Semester 2, 2007/8 
4.  (a)  

 

Part (a) not relevant 

 

 (b) For the prismatic beam of Fig. Q3(b), using Macaulay’s Method, find the vertical deflection at C in terms 
of EI. 
 

(10 marks) 

 

A B
6 m 2 m

FIG. Q3(b)

C

20 kN/m

 

 

(Ans. 20 EI ) 
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6. Appendix 

6.1 References 

The basic reference is the two-page paper which started it all: 

• Macaulay, W. H. (1919), ‘Note on the deflection of the beams’, Messenger of 

Mathematics, 48, pp. 129-130. 

 

Most textbooks cover the application of the method, for example: 

• Gere, J.M and Goodno, B.J. (2008), Mechanics of Materials, 7th Edn., Cengage 

Engineering. 

• McKenzie, W.M.C. (2006), Examples in Structural Analysis, Taylor and 

Francis, Abington. 

• Benham, P.P., Crawford, R.J. and Armstrong, C.G. (1996), Mechanics of 

Engineering Materials, 2nd Edn., Pearson Education.  

 

Some interesting developments and uses of the step-functions method are: 

• Biondi, B. and Caddemi, S. (2007), ‘Euler–Bernoulli beams with multiple 

singularities in the flexural stiffness’, European Journal of Mechanics A/Solids, 

26 pp. 789–809. 

• Falsone, G. (2002), ‘The use of generalised functions in the discontinuous beam 

bending differential equations’,  International Journal of Engineering 

Education, Vol. 18, No. 3, pp. 337-343. 
 

See www.colincaprani.com for notes on the use of Macaulay’s Method in the 

development of a general beam analysis program, based upon the following work: 

• Wilson, H.B., Turcotte, L.H., and Halpern, D. (2003), Advanced Mathematics 

and Mechanics Applications Using MATLAB, 3rd Edn., Chapman and 

Hall/CRC, Boca Raton, Florida. 


